Symmetric–Antisymmetric Orthonormal Multiwavelets and Related Scalar Wavelets

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Wavelets to Multiwavelets

This paper gives an overview of recent achievements of the multiwavelet theory. The construction of multiwavelets is based on a multiresolution analysis with higher multiplicity generated by a scaling vector. The basic properties of scaling vectors such as L-stability, approximation order and regularity are studied. Most of the proofs are sketched.

متن کامل

Some properties of symmetric-antisymmetric orthonormal multiwavelets

We analyze the discrete multiwavelet transform using symmetric–antisymmetric orthonormal multifilters (SAOMF’s) and prove that for any even-length SAOMF, we can always find an odd-length SAOMF such that the implementation of discrete multiwavelet transform using either the even-length or the odd-length SAOMF produces identical output for a given input signal if the sum/difference prefilter is c...

متن کامل

Interpolatory and Orthonormal Trigonometric Wavelets

The aim of this paper is the detailed investigation of trigono-metric polynomial spaces as a tool for approximation and signal analysis. Sample spaces are generated by equidistant translates of certain de la Vall ee Poussin means. The diierent de la Vall ee Poussin means enable us to choose between better time-or frequency-localization. For nested sample spaces and corresponding wavelet spaces,...

متن کامل

Orthonormal Wavelets for System Identification

A new scheme of non-parametric identification method based on orthonormal wavelets for structures with multicoupled modes is developed and presented in this paper. The advantages of using Wavelets for system identification are that good localization and hierarchical multiresolution can be achieved in both time and frequency domains. Consequently, the system model with multiple coupled modes can...

متن کامل

Orthonormal Dilations of Parseval Wavelets

We prove that any Parseval wavelet frame is the projection of an orthonormal wavelet basis for a representation of the Baumslag-Solitar group BS(1, 2) = 〈u, t | utu = t〉. We give a precise description of this representation in some special cases, and show that for wavelet sets, it is related to symbolic dynamics (Theorem 3.14). We show that the structure of the representation depends on the ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2000

ISSN: 1063-5203

DOI: 10.1006/acha.1999.0288